Fibers and 3D mesh scaffolds from biodegradable starch-based blends: production and characterization.
نویسندگان
چکیده
The aim of this work is the production of fibers from biodegradable polymers to obtain 3D scaffolds for tissue engineering of hard tissues. The scaffolds required for this highly demanding application need to have, as well as the biological and mechanical characteristics, a high degree of porosity with suitable dimensions for cell seeding and proliferation. Furthermore, the open cell porosity should have adequate interconnectivity for a continuous flow of nutrients and outflow of cell metabolic residues as well as to allow cell growth into confluent layers. Blends of corn starch, a natural biodegradable polymer, with other synthetic polymers (poly(ethylene vinyl alcohol), poly(epsilon-caprolactone), poly(lactic acid)) were selected for this work because of their good balance of properties, namely biocompatibility, processability and mechanical properties. Melt spinning was used to produce fibers from all the blends and 3D meshes from one of the starch-poly(lactic acid) blends. The experimental characterization included the evaluation of the tensile mechanical properties and thermal properties of the fibers and the compression stiffness, porosity and degradation behavior of the 3D meshes. Light microscopy picture of 3D meshes.
منابع مشابه
A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour.
One of the present challenges in polymer scaffold processing is the fabrication of three-dimensional (3D) architectures with an adequate mechanical performance to be used in the tissue engineering of hard tissues. This paper describes a preliminary study on the development of a new method to produce biodegradable scaffolds from a range of corn-starch-based polymers. In some cases, hydroxlapatit...
متن کاملEnzymatic degradation of Poly (ε-Caprolactone) and Starch blends bontaining SiO2 nanoparticle by Amyloglucosidase and α-Amylase
The aims of the study were to investigate the effect of poly(ε -caprolactone) (PCL) and nano- SiO2 within the thermoplastic starch (TPS) blends on the rate and extent of starch enzymatic hydrolysis using enzymes α-amylase and amyloglucosidase. The results of this study have revealed that blends with nano-SiO2 content at 6 wt% exhibited a significantly reduced rate and exte...
متن کاملEnzymatic degradation of Poly (ε-Caprolactone) and Starch blends bontaining SiO2 nanoparticle by Amyloglucosidase and α-Amylase
The aims of the study were to investigate the effect of poly(ε -caprolactone) (PCL) and nano- SiO2 within the thermoplastic starch (TPS) blends on the rate and extent of starch enzymatic hydrolysis using enzymes α-amylase and amyloglucosidase. The results of this study have revealed that blends with nano-SiO2 content at 6 wt% exhibited a significantly reduced rate and exte...
متن کاملCharacterization of a new biodegradable edible film based on Sago Starch loaded with Carboxymethyl Cellulose nanoparticles
Objective(s): Biodegradable film is widely used because it is free from synthetic substances and does not lead to environment pollution. This study aimed to prepare and characterize biodegradable sago starch films loaded with Carboxymethyl Cellulose nanoparticles. Methods: Sago starch films were prepared and plasticized with sorbitol/ glycerol by t...
متن کاملSynthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Macromolecular bioscience
دوره 4 8 شماره
صفحات -
تاریخ انتشار 2004